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Abstract- The trend in the elastic constants of simple and transition elemental cube metals are explained in terms of a uniform electron gas theory. Previously this new 

model was used to show that the cohesive energies of the elemental transition metals depend primarily on the bonding valence and the average electron density at the 

boundary of the unit cell. In the present work we shall study the pseudo elastic behavior of liquid binary alloys using pseudo potential model based on the density 

functional theory with both the local density approximation and the generalized gradient approximation for the exchange correlation function. Here we use a slight 

modification of the same model to show that the elastic constants of the elemental cubic metal depend primarily on the bonding valance,  the density at the cell boundary 

and the symmetry of the lattice. 

 

Index Terms- Elastic Constants, Cohesive Energy, Pseudopotential Model, Density Functional Theory, Generalized Gradient Approximation, Exchange Correlation 

Function, Bonding Valence 

 

 

1  INTRODUCTION 

THE effect of strain on electron properties require knowledge of 

the materials mechanical properties and specifically the elastic 
constants which describe the response to an applied macroscopic 

stress. To this purpose the elastic constants of the material under 
study are of particular interest and has been calculated at different 

composition by computing the compounds of the stress tensor  

for small strain. It is well known that a cubic crystal has only 
three independent elastic constants. When a vacancy is thermally 

created in a solid, the latter’s volume changes thus defining a 
vacancy formation volume. In other cases a defect is produced by 

exchange one of the foreign atom or molecule. A defect volume 
V

d
 can be define as the difference between the volume V of the 

host material containing defect (d) and the volume V
c
 of the 

perfect crystal, provided that the volume V and V
o
 contain the 

same number of particles. The theoretical pressure volume 
relations for metals were studied by Soma et al. By using a model 

potential due to Kulshrestha etal. Pandya et al. have also studied 
the pressure volume relation for fcc transition metals using the 

model proposed by Antanov et al. Some rigorous methods to 
calculate the cubic and hexagonal elastic constants have been well 

described in previous studies. 
 

The main purpose of the present work is the 
determination of the elastic constants of liquid binary alloys at 

different concentration using pseudopotential model by means of 
the Cambridge Serial total Energy Package Soft Ware(CASTEP) 

Employing the generalized gradient approximation within density 
functional theory (DFT). 
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2  Theoretical formalism 

 

In the present work Varotsos and Alexopoutos model 
has been applied using  slight modification in volume due to 

concentration. 
 

Varotsos had derived an expression for the bulk 
modulus of mixed system in terms of constituent ionic 

compounds, their molar volumes and their molecular fractions. 

According to him the bulk modulus of the mixed system is given 
by  

 
B = [1 + x ( V2/ V1 – 1)/ 1 +(B1V2/B2V1 – 1)] B1 

  
In this expression x is the molecular fraction of compound 1 

having Bulk modulus and molar volume B1 and V1 respectively. 
B2 and V2 are the Bulk modulus and the molar volumes of 

compound 2 respectively. 
The molecular volume of the alloy is determine in ideal sense 

using the relation  
 

 C C)(1 1
Ideal
alloy  

Here 1 and  2 are the atomic volume of the compounds species 

of the alloy and C is concentration of the second compound. 
 

With the increasing power of modern work stations 
pseudopotential calculation of elastic constants have become 

possible. These investigations are all based on density functional 
theory; differ however, in the treatment if  tightly bound core 

electrons. 
 

Our calculations were made using the plane wave pseudopotential 
method as invoked by the CASTEP. Castep is the total energy 

code that allows one to easily compute atomic forces and stress as 
well as the energy and electronic properties and it is thus most 

suitable for structural studies.  
     

The Jellium model of the electron gas has long been used to 
understand the qualitative trends in the plasma ion and electron 

hole excitation spectra of elemental metals.  The calculated 
spectra agree semiquanitatively with experiment for simple 

metals, and are qualitatively useful for the transition metals. One 

is used to thinking that the excitations of quantum systems are 
harder to predict than ground–state properties.  From this point of 

view, it is surprising that the Jellium model has not provided a 
similarly simple explanation for the trends in the ground state 

energetic of the elemental metals.  For non–uniform systems the 
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background density varies with position and the new potential 

gives rise to force. The total external electron potential Vext (r) is 
given explicitly by  

 

vext(r) = (r) + v0 nb (r)/n,   (1) 

 

Where (r) is the usual electrostatic potential. The strength of the 

ad hoc interaction v0 is uniquely fixed by the condition of zero 
forces for the uniform state and is given in terms of the energy of 

bulk Jellium and n is the uniform equilibrium electron density. 
 

 The theory of ideal metals can be understood by starting 
with an electron gas that has a uniform electron and background 

density n. The zero– force condition is achieved by introducing an 
additional ad hoc electron – ion potential, which at a point r is 

proportional to the background density at that point. The strength 
of the additional potential is determined by the zero – force 

condition, and is given by  
 

v0 = – n( e jell / n)n    (2) 
   

Here e jell is the energy per electron in uniform Jellium of density 

n. 
 The Born–Oppenheimer approximation yields the 

following many– body Hamiltonian for the unmodified theory of 
ideal metals: 

 

H = – ħ
2
/2m I i

2 
+ e

2
/2 i j(1/ri –rj) + e

2
/2 d

3
rd

3
r’ [nb(r) nb(r’)/ 

r – r’] 

 –  e
2
 i d

3
r [nb (r) / ri – rj] + v0 i [nb(ri)/n] (3) 

 
A density function for the energy can also be used to 

describe the theory of ideal metals in the Born – Oppenheimer 
approximation. Formally, 

 

E [ne, nb] = Ts[ne] + d
3 
r’ d

3 
r [  (r)  (r’)/ r – r’]  

 
+ Exc [ne] + Eei [ne, nb] (4) 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

Here,   = n e  –n b denotes the net charge. Exc denotes the 

exchange – correlation energy, while Ts denotes the kinetic 
energy of non–interacting electrons. The second term on right 

hand side denotes the classical electrostatics energy. Finally, the 
last term on the right hand side models electron–ion interactions 

beyond the classical electrostatic interaction. It is expressed, for 
the unmodified ideal metal as  

 

Eei [ne, nb] = v0/n d
3 
r nb (r) ne (r)  (5) 

 
 We modify the theory of ideal metals by introducing 

the following, more general form for the electron ion interaction.   
 

Eei [ne, nb]  d
3 
r ne (r) [v0 {nb (r) /n} {1–½ 

2
 (ne (r) – n)

2
 }](6) 

 

Here  is an ad hoc parameter that is chosen once to give 
agreement with experiment for all metals. 

 
 Solution for the energy can be obtained from the  

energy – density function by following the procedure of Kohn 
and Sham. The self – consistent equations with an effective 

potential is therefore given as  

 

veff (r) =  Exc ne / ne +  Eei [ne, nb] /  ne  (7) 
  

Density – functional theory can also be used to compute the 
response of the electron gas to a perturbation. The screened 

potential – density linear response function can be obtained in the 

random – phase approximation Shore etal,  

 
sc 

(q)  
0 
(q) /  [1 – (8 /q

2
  +  

2
Exc / ne

2
n 

                  + 
2
 Eei /  ne

2
n) 

0 
(q)  (8) 

 

Here   
0  

is the Lindhard function. The functional derivative of 
the exchange – correlation energy can be evaluated in the local– 

density approximation, as  
 

       [
2 
Exc /  ne] n = d

2
/d ne

2 
{ ne exc (ne)} n (9) 

 

Here, exc denotes the exchange– correlation energy of Jellium per 
unit volume. The functional derivative for the electron – ion 

interaction can be evaluated from  (6)  
 

2 
Ee –i / ne

 
n = v0  nb /n d

2
/d ne

2
 {ne [1–1/2 

2
 (ne – n)

2
]} (10) 

 

If the transition metal is compressed, the rigid positive 
backgrounds of the various Wigner – Seitz cells overlap and the 

background becomes inhomogeneous, the Wigner – Seitz cell 
centered about the origin of coordinates and define the 

characteristic function as,  

 

 (r) = 1 r     Wigner –Seitz cell  

and,        

  (r) = 0 r     Wigner –Seitz cell    (11) 

   
In the following, we will consider background densities that can 

be formed as  
 

nb (r) = n Ri   (r – Ri)   (12)  
Where Ri denotes the set of vectors. 

 
Now the change in energy to second order E 

(2)
 is 

obtained by comparing three states. Which is  
Eeq (n) = N [ejell (n) + v0]   (13) 

 
Where N is the total number of electrons.  

 
The extraction of elastic constants is straightforward 

once the energy changes have been calculated. The change in 

energy is related to the strain ij and the elastic constants Cijkl, via   

 

 E = ½ Cij kl ij kl    (14) 

 
We computed the energy changes for the fcc and bcc cubic metals 

using following strains: 
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The axes of strain tensor are aligned with the set of 

[100] direction of the cubic crystal. These strains over determine 
C11  ,  C12  , and C44. 

 
Vartsos, 1980; had derived an expression for bulk 

modulus of mixed systems in terms of those of constituent ionic 
compounds, their molar volumes, and their molecular fractions. 

This is given by  
 

B = [{1 +  (V2 / V1 – 1)} / {1 +  (B1 V2 / B2 V1 – 1)}] B1  

      (16) 

 

In this expression  is the molecular fraction of compound 1 

having bulk modulus and molar volume B1 and V1, respectively. 
B2 and V2 are the bulk modulus and the molar volume of 

compound 2, respectively. B is the bulk modulus of the mixed 
system. This expression yields very satisfactory results. Moreover 

from the above expression we get the values for bulk modulii 
such, not the three independent elastic constants C11  ,C12 ,  C44. 

Which are sometimes necessary to enable one to predict the 
values of Young’s modulus, Poisson’s ratio, etc. in different 

directions.  

 
 The aim of this work is to derive expression to predict 

the values of C11,  C12 , C44 for mixed systems when those for 
constituent ionic compounds and their molecular fractions are 

known.  
 

 Giri and Mitra, 1985; have derived an expression for 
Debye temperatures Θrs(pq) of mixed system rs(pq) in terms of 

those Θr and Θs  of ionic compounds r  and s having molecular 
fractions p and q respectively , which is  

 
Mrs (pq) Θ

2
rs (pq) = pMr Θ

2
r + q Ms Θ

2
s  (17) 

 
Here Mrs(pq)   = pMr  +  q Ms  , Mr  and Ms are the molecular 

weights of the mixed system , compound r , and compound  s, 
respectively . They have shown that the above equation is valide 

for number of mixed system at all proportions. For the cubic 
lattices the nearest neighbour central constant f1 is related to 

Debye temperature Θ   through the relation, Shirly, 1975; 
 

ƒ1 = Y M Θ
2
    (18) 

Where,  

Y  = C k
2
 A / 9 ħ

2
 ; 

 

A is the atomic mass unit, M the mass, C is a constant depending 
on the lattice type, having value 2.515 for f. c. c lattices. 

 
 If ƒ1

rs(pq)
, ƒ1

r
, ƒ1

s
 are the nearest neighbor central force 

constants for the mixed system, for compound r,  and compound s 

, We may ,therefore write  
 

ƒ1
rs(pq)

  = Y Mrs(pq) Θ
2
rs(pq)  (19) 

ƒ1
r 

= Y M r Θr
2  

(20) 

ƒ1
s 

= Y Ms Θs
2  

(21) 
ƒ1

rs(pq) 
= Pƒ1

r
 + qƒ1

s
  (22) 

 
Similarly, 

ƒ2
rs(pq)

 = pƒ2
r
 + q ƒ2

s
   (23) 

  ƒ3
rs(pq)

 = pƒ3 
r  

+ q ƒ3
s  

(24) 

 

So we get three equations for three types of force constants for 
mixed systems in terms for these constituent ionic compounds. 

 
 According to Niu and Shimizu, force constants ƒ1, ƒ2 

and ƒ3 are related to elastic constants C11, C12 and C44 for f.c.c 
lattice through these three equations. They are  

 
ƒ1 + 3 ƒ3 = a C44   (25) 

ƒ1  + 4ƒ2  –  ƒ3 = a (C11 –C44)  (26) 
  2 (ƒ1 – ƒ3) = a (C12 + C44)  (27) 

 
Here a is the lattice constant. For mixed system it can be 

expressed as  
 

 ars(pq)  C44
rs(pq)

 = ƒ1
rs(pq)

 +3 ƒ3
rs(pq)

  (28) 
 ars(pq)  C44

rs(pq)
 =  pƒ1

r
 + qƒ1

s
 + 3pƒ3

r
 + 3 q ƒ3

s
 

         =  p (ƒ1 +3ƒ3
r
) + q (ƒ1

s
 + 3ƒ3

s
). (29) 

Finally, 
 ars(pq)  C44

rs(pq)
  = p a r C44

r
 – q as C44 

s
   (30) 

 
C44

r
 and C44

s
 are the values of C44 for ionic compounds r and s 

having lattice constants ar and as   respectively.  C44
rs(pq)

 is that of 
the mixed system . ars(pq) is the lattice constant of the mixed 

system with similar calculation for C11  and C 12 we get  
 

ars(pq)  C11
rs(pq)

   parC11
r  
  –  qasC11

s
 .  (31) 

ars(pq)  C12
rs(pq)

   =  parC12
r
   –  qas C12

s
.     (32) 

 
 Thus we can derive C11, C12 and C44 for mixed systems, 

if the constituent ionic compounds along with their lattice 
constants are known. These parameters of the reference binary 

alloys are not easily available, so we have used Vegard’s law. 
Once by knowing the value of C11, C12 and C44, the value of B can 

be calculated. 
 

3  Results and discussion 
 

In the present work we have calculated the values of 
C11, C12 and C44 for the reference alloy system at different 

concentration, which are tabulated in the table 1 – 3.   
 

 

TABLE – 1 

 

ELASTIC CONSTANTS OF Na–K AT 

EQUI–CONCENTRATION 

 

 

q / 

2kf 

Values of elastic 

constants 

(10
10

N /m
2
) 

Values of bulk Modulii 

B 

(10
10

N /m
2
) 

C11 C12 C44 

Calc. 

(Present.) 
Calc.(1.) 

0.00 3.962 0.687 0.607 1.782 1.766 

0.50 3.822 0.657 0.581 1.716 1.692 

1.00 3.702 0.632 0.554 1.654 1.631 

1.50 3.578 0.612 0.531 1.596 1.593 

2.00 3.432 0.601 0.522 1.573 1.542 
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TABLE – 2 

 

ELASTIC CONSTANTS OF K–Cl AT 

EQUI–CONCENTRATION 

 

 

q / 

2kf 

Values of elastic constants 

(10
10

N /m
2
) 

Values of bulk Modulii 

B 

(10
10

N /m
2
) 

C11 C12 C44 

Calc. 

(Present.) 
Calc.(1.) 

0.00 14.201 6.354 7.234 8.890  

0.50 13.365 6.001 6.935 8.732  

1.00 12.234 5.932 6.003 8.695  

1.50 11.759 5.634 5.443 8.235  

2.00 11.663 5.320 5.213 8.125  

  

 

TABLE – 3 

 

ELASTIC CONSTANTS OF K–Br AT 

EQUI–CONCENTRATION 

 

 

q / 

2kf 

Values of elastic constants 

(10
10

N /m
2
) 

Values of bulk Modulii 

B 

(10
10

N /m
2
) 

C11 C12 C44 

Calc. 

(Present.) 
Calc.(1.) 

0.00 18.885 9.334 6.373 4.321  

0.50 17.732 9.363 6.125 4.221  

1.00 17.321 9.321 5.987 4.132  

1.50 16.421 9.233 5.635 4.110  

2.00 15.321 9.121 5.334 4.009  

 

Giri and Mitra 1986, which are in good agreement to the 
experimental values, have also applied this technique to KCl and 

KBr system for a number of compositions. Our theoretical study 
of binary liquid alloys at equi-concentration not only reproduces 

the concentration dependence of various elastic constants and 
microscopic properties but also throw light on the phenomenon of 

compound formation in its melt. 
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